Наиболее подходящая модель для переделки - это Palito PA-218. Приёмник содержит специализированную микросхему SC3610D, имеющую в составе частотомер + контроллер ЖКИ + часы с будильником. Переделка приёмника в частотомер займёт около получаса (с учётом кофе и перекура). По сути надо просто убрать лишние элементы - микросхему приёмника IC2, два резистора R5 и R13, конденсатор C25 и транзистор Q7. На общий подключить провод с "кракодильчиком", а к конденсатору C19 подпаять провод на щуп-иглу, закреплённую с краю корпуса (можно просто вплавить медицинскую металлическую иглу). Конечно, если есть желание, то приёмник можно оставить, но надо будет исключить влияние гетеродина на вход частотомера в режиме измерений. По поводу других моделей много не скажу, но переделывался ещё Palito 214 с другой микросхемой и работал ничуть не хуже.

Так для чего же полученный прибор можно использовать?

1 .Определить частоту генерации любого кварца 500 кГц до 200 МГц (если такие существуют). Под рукой была схема с кварцем 49 МГц - прибор стабильно определял частоту не срывая генерации.
2 . Замерять ПЧ и выходные частоты 40 МГц - овых радиотелефонов (для замера выходной частоты общий провод можно не подключать).
3 . Диапазон частот лежит до 200 МГц (в зависимости от даты производства отдельные экземпляры позволяют замерять до 400 МГц). Следовательно можно оценить работоспособность ВЧ трактов 200-300 МГц -овых радиотелефонов.

Конечно погрешность измерений (0,1...0,2МГц) не позваляет делать точные регулировки. Прибор больше предназначен для оценки работоспособности узла или аппарата в целом при отсутствии под рукой осциллографа или при высоких рабочих частотах.

Если будут возникать какие-либо вопросы, пишите на [email protected] Вячеславу.

Желаю всем удачи.

В давние времена я приобрел вот такой СВ-КВ-УКВ радиоприемник :

Достоинством такого приемника является его цифровая шкала частоты . Как оказалось, такое устройство легко превратить в весьма точный частотомер для диапазона десятков-сотен мегагерц !

Открутив несколько винтиков и отщелкнув защелки, можно открыть корпус приемника. Затем откручиваем еще винтики и снимаем плату. Итак, перед ними три части - задняя крышка с элементами питания (1), плата радиоприемника (2) и передняя крышка с платой индикации и частотомером(!) (3):

От платы индикации к плате собственно приемника идет группа из трех проводов, которые подписаны " AM ", "FM " и "FM.G ".

Нас интересует провод с подписью "FM " - он на плате приемника подпаян к дисковому конденсатору. Этот провод и является входным проводом частотомера - аккуратно (!) отпаиваем его от конденсатора, ведь радиоприемник еще пригодится:

Теперь включаем режим "FM " (УКВ), перемещая ползунок, и можно через конденсатор емкостью несколько пикофарад подключить его к источнику сигнала, частоту которого требуется измерить. Также можно проверить частоту сигнала радиопередатчика, расположив его антенну рядом с проводом от частотомера.

Но есть один нюанс - частотомер рассчитан на измерение частоты гетеродина, которая в этом приемнике на 10,7 МГц выше частоты сигнала (промежуточная частота (IF ) составляет 10,7 МГц). Поэтому для определения истинной частоты сигнала нужно прибавить к отображаемой частоте 10,7 МГц.

Я проверил работоспособность импровизированного частотомера, поднеся к нему передатчик с частотой сигнала 433,92 МГц:

Voi la :-) Как видим, отображается частота 423,3 МГц. Прибавляем 10,7 и получаем 423,3 + 10,7 = 434 МГц (отличие от 433,92 составляет 0,02 % !!!). Опыт преобразования приемника в частотомер оказался успешным!

Счетчик оказался кольцевым, т.е., например, показания приемника 998,0 МГц соответствуют частоте (998,0-1000) +10,7 = 8,7 МГц.

Наиболее подходящая модель для переделки - это Palito PA-218. Приемник содержит специализированную микросхему SC3610D, имеющую в составе частотомер + контроллер ЖКИ + часы с будильником. Переделка приемника в частотомер займет около получаса (с учетом кофе и перекура). По сути надо просто убрать лишние элементы - микросхему приемника IC2, два резистора R5 и R13, конденсатор C25 и транзистор Q7. На общий подключить провод с "крокодильчиком", а к конденсатору C19 подпаять провод на щуп-иглу, закрепленную с краю корпуса (можно просто вплавить медицинскую металлическую иглу). Конечно, если есть желание, то приемник можно оставить, но надо будет исключить влияние гетеродина на вход частотомера в режиме измерений. По поводу других моделей много не скажу, но переделывался еще Palito 214 с другой микросхемой и работал ничуть не хуже.

Так для чего же полученный прибор можно использовать?

1. Определить частоту генерации любого кварца 500 кГц до 200 МГц (если такие существуют). Под рукой была схема с кварцем 49 МГц - прибор стабильно определял частоту не срывая генерации.
2. Замерять ПЧ и выходные частоты 40 МГц - овых радиотелефонов (для замера выходной частоты общий провод можно не подключать).
3. Диапазон частот лежит до 200 МГц (в зависимости от даты производства отдельные экземпляры позволяют замерять до 400 МГц). Следовательно можно оценить работоспособность ВЧ трактов 200-300 МГц -овых радиотелефонов.

Конечно погрешность измерений (0,1...0,2МГц) не позволяет делать точные регулировки. Прибор больше предназначен для оценки работоспособности узла или аппарата в целом при отсутствии под рукой осциллографа или при высоких рабочих частотах.

Публикация: www.library.espec.ws, www.cxem.net

Смотрите другие статьи раздела .

Простые карманные миниатюрные УКВ-ЧМ приемники с цифровой шкалой «Маnво», «Palito», «ЕСВ» и аналогичные представляет определенный интерес, так как встроенная электронная шкала это не что иное, как частотомер с цифровой индикацией. Сделав несложную доработку из них можно получить частотомер, который на четырех декадном индикаторе индицирует сотни, десятки, единицы мегагерц и сотни килогерц.

Простые карманные миниатюрные УКВ-ЧМ приемники с цифровой шкалой «Маnво», «Palito», «ЕСВ» и аналогичные представляет определенный интерес, так как встроенная электронная шкала это не что иное, как частотомер с цифровой индикацией. Сделав несложную доработку из них можно получить частотомер, который на четырех декадном индикаторе индицирует сотни, десятки, единицы мегагерц и сотни килогерц.

Малые габариты, высокая экономичность (потребляемый ток всего несколько миллиампер) и большой диапазон рабочих частот (вплоть до 800 МГц!) делают такой измерительный прибор довольно привлекательным.

Схема радиоприемника.


В его состав входят(рис. 1):
.Плата радиоприемного устройства (РПУ) на микросхеме SC1088 (или TDA7088), УЗЧ на транзисторах и УРЧ на двух транзисторах.
.На второй плате размещены часы, элементы цифровой шкалы (частотомер) и кнопки управления.

Питающее напряжение постоянно поступает на узел часов и при выключенном приемнике на табло индицируется текущее время. При включении приемника выключателем SA1 напряжение питания поступает на приемник и шину управления частотомером. Сигнал гетеродина усиливается УРЧ, поступает на частотомер и на индикаторе индицируется частота настройки.

Приемник построен по супергетеродинной схеме (нижняя настройка) с низкой ПЧ (70 кГц), и поэтому для правильной индикации частоты настройки показания частотомера завышены на 0,1 МГц, что надо учитывать при проведении измерений. Очевидно, что если подавать на вход частотомера контролируемый сигнал, то при выполнении определенных условий будет индицироваться его частота.
Прежде всего, для этого следует на корпусе приемника установить малогабаритное высокочастотное гнездо (например, SMA), поместив его ближе к входу частотомера. Кроме того, для включения частотомера надо установить малогабаритный переключатель (на схеме он обозначен как SA2").

Переключатель ПД9-2 устанавливают (приклеивают на плату) рядом с регулятором громкости, для этого перемычки J11, J14 и конденсатор С11 (нумерация приведена в соответствии с обозначением на плате) надо установить со стороны печатных проводников. Корпус переключателя соединяют с общим проводом. Гнездо SMA устанавливают на узкой стороне рядом с ленточным жгутом J21, который идет от платы приемника к плате часов (частотомера). Центральный контакт гнезда через конденсатор емкостью 500... 1000 пФ подключается к входу частотомера или УРЧ, а корпус — к общему проводу.


Схема УРЧ показана на рис. 3.

Так как он имеет два каскада, возможны три варианта подключения:
.к входу первого каскада (точка 1),
.к входу второго (точка 2)
.или к входу частотомера (точка 3).

Понятно, что место подключения будет оказывать влияние на диапазон рабочих частот и чувствительность частотомера, но в любом случае напряжение сигнала более 1V подавать не следует. Например, при подключении измеряемого сигнала на вход первого каскада чувствительность в диапазоне частот до 100 МГц составляет менее 1 мВ. Следует отметить, что при таком подключении чувствительность является чрезмерной и приводит к тому, что частотомер будет слишком чувствителен к помехам и наводкам. Кроме того, в этом диапазоне из-за нелинейных эффектов в усилителе возможно появление искажений и частотомер может индицировать частоту гармонических составляющих сигнала. Если частотомер не реагирует на наводки, то при отсутствии сигнала на индикаторе будет индицироваться показание 000,1 МГц.
В авторском варианте для подключения была выбрана точка 3. При этом дополнительный выключатель включен между плюсом батареи питания (перемычка J23) и шиной управления частотомера (см. рис. 1).
Для этого красный (или третий сверху) провод в жгуте J21 надо отсоединить от платы приемника и присоединить к выключателю. Такое подключение позволяет включать частотомер при выключенном приемнике или отключать его при включенном приемнике. Последнее удобно еще и тем, что при приеме радиостанции частотомер можно отключить и контролировать текущее время.
Нижний предел измеряемой частоты составляет 0,5... 1 МГц, верхний предел зависит от напряжения питания и для 2,5V составляет 600 МГц, для 3V — 700 МГц, а при 4V достигает 800 МГц. Большее напряжение подавать не следует.
При выключенном приемнике ток, потребляемый частотомером (вместе с часами), зависит от измеряемой частоты и изменяется от 0,3 мА при отсутствии сигнала до 0,7 мА на частотах до 50 МГц и до 4 мА на частоте 600 МГц.

Источник: Журнал "Радио" №2 2003 год.

Изприемника "PALITO" PA-618.

Модели таких приемников содержат встроенный цифровой частотомер, который благодаря наличию системы автоматической настройки и удержания частоты гетеродина заметно улучшает работу приемника. К тому же низкая промежуточная частота приемника (70 кГц) существенно упрощает его сопряжение с частотомером, поскольку есть возможность подключить последний непосредственно к гетеродину с использованием лишь буферных усилителей.
Обычно они представляют собой два транзистора, включенных по схеме с ОЭ.



Эти усилители обеспечивают достаточную чувствительность частотомера, чтобы использовать его в качестве самостоятельного устройства. Он позволяет измерять частоту от 1 до 150 МГц с точностью до десятых долей Гц, а при достаточно высоком уровне сигнала - вплоть до 300 МГц.
Правда, точность его относительно невысока, но приемники настолько дешевы, что можно смириться и с невысокой точностью, и с не очень широким диапазоном частот, измеряемых подобным частотомером.
К тому же стоит учесть, что в радиолюбительской практике часто бывает, необходим именно этот диапазон.
Самый простой способ использования цифровой шкалы приемника в качестве самостоятельного частотомера - это отключение его от гетеродина и подключение к измеряемому сигналу.
Но на достаточно высоких частотах (примерно от 20 МГц) и достаточно большом сигнале можно использовать и другой способ. Достаточно отключить от контура гетеродина конденсатор, а к катушке гетеродина приблизить контур прибора, частоту которого необходимо измерить.
Кстати, если на корпусе приемника установить тумблер, включающий/выключающий конденсатор, и к нему припаять щуп в виде иглы, как показано на рис. 1, то впоследствии приемник можно будет, не разбирая использовать как по прямому назначению, так и в качестве частотомера.

В корпусе от маркера.

От приёмника надо отпаять всего четыре провода шлейфа и припаять к собранному усилителю ВЧ.
(детали, для которого можно взять из приёмника). R6-чтобы не мерцали показания.
Datasheet: SC3610

Емкость на входе(10пф), можно уменьшить до 1пф с целью уменьшения вносимой погрешности в случае непосредственного подключения к колебательному контуру.

Частотомер можно использовать и как часы, надо только питание подать через переключатель а для коррекции времени использовать свободные выводы см. фото

Источник информации: тема на форуме - «Переделка китайского радиоприёмника в частотомер»


Микросхему TDA7088 можно считать условным аналогом отечественной микросхеме К174ХА34 , но он отличается более низким напряжением питания и наличием электронной плавной настройки, кнопками SCAN и RESET. На первом рисунке показана схема китайского приемника, это самый простой вариант, в котором имеется всего три органа управления, - две кнопки для настройки на станцию, и переменный резистор - регулятор громкости, объединенный с выключателем питания. Еще бывает индикаторный светодиод, индицирующий только питание.

Прослушивание радиовещательных станций осуществляется на головные телефоны, подключаемые к разъему XS1. Используются стереофонические микронаушники «затычки для ушей» от аудиоплеера. Но сигнал на них подается монофонический, а сами капсюли включаются последовательно (точка общего провода разъема наушников никуда не подключена).

Антенной, при этом, служит провод головных телефонов. Для разделения НЧ и ВЧ составляющих используются дроссели L3 и L4. которые не дают низкочастотному усилителю «закорачивать» сигнал антенны. Сигнал, принятый антенной, поступает на входной широкополосной контур L1, С1 который не перестраивается по диапазону, а настроен на его середину. И далее сигнал поступает через вывод 11 ИМС на вход УРЧ микросхемы. Усиленный сигнал радиочастоты и сигнал гетеродина, контуром которого является L2, С13, VD1, подключенный к выводу 5, поступают на смеситель внутри микросхемы.

Промежуточная частота низкая - 70 кГц, а тракт приема микросхемы IC1 имеет очень похожую схему на ИМС К174ХА34. Сигнал ПЧ во внутренних цепях микросхемы выделяется активным фильтром на операционных усилителях и RC-цепях, пассивными элементами которого являются конденсаторы С11, С12. Затем сигнал поступает на вход усилителя-ограничителя - вывод 9 IC1. Конденсаторы С4, С6 являются элементами коррекции усилителя-ограничителя, с выхода которого сигнал поступает на ЧМ-демодулятор.

Демодулированный сигнал, пройдя через фильтр НЧ-коррекции, внешним элементом которого является конденсатор С14, поступает на схему блокировки звука при настройке, режимом работы которой можно управлять изменением емкости конденсатора С8. В состав микросхемы входит триггер автоматической настройки на станцию. При нажатии на кнопку SB2 RESET на выводе 16 устанавливается напряжение питания, которое начинает плавно уменьшаться, соответственно изменяется напряжение на варикапе VD1 и происходит перестройка частоты вверх по диапазону.

При попадании в полосу захвата частоты сигнала радиостанции перестройка прекращается. Для дальнейшей перестройки по диапазону необходимо нажать кнопку SB1 SCAN, и приемник начнет поиск следующей по диапазону радиостанции. При её захвате, - опять остановка. И так, нажимая SB1 можно последовательно перебирать радиостанции. А кнопкой SB2 вернуться на исходную позицию. Сигнал звуковой частоты с вывода 2 проходит через регулятор громкости "VOL" и поступает на вход усилителя звуковой частоты который сделан на двух транзисторах VT1 и VT2. Это простой телефонный УНЧ на разноструктурных транзисторах. С эмиттера VT1 сигнал НЧ поступает на наушники. Приемник по схеме на рисунке 1 обычно сделан в виде брелка для ключей или даже своеобразного нагрудного значка. Питание от дисковой батареи напряжением 3V (применяется в некоторых пультах ДУ).

Главный недостаток - отсутствие шкалы настройки. Схема китайского приемника показаная на рисунке ниже это модифицированный вариант первой. Здесь есть цифровая шкала на жидкокристаллическом дисплее и часы-будильник. Синтезатора частоты нет, просто шкала на IC1 представляет собой своеобразный частотомер, измеряющий частоту гетеродина приемника. Электрическая схема приемного тракта практически не имеет отличий от первой схемы, а разница только в наличии цифровой схемы на ИМС IC1.

Как уже сказано, это часы-будильник с частотомером. Сигнал гетеродина с гетеродинного контура поступает на вход высокочастотного предварительного усилителя на транзисторах VT1, VT2 и далее на вывод 35 -вход цифрового индикатора частоты. При низком уровне на выводе 26 (когда приемник выключен) микросхема работает в режиме часов, при высоком уровне (когда приемник включен) - в режиме цифровой шкалы. Для управления часами используют пять кнопок:

SB1 - включение звонка;
SB2 - настройка времени звонка;
SB3 - настройка текущего времени;
SB4 - подстройка минут;
SB5 - подстройка часов.

Для настройки часов необходимо нажать на кнопку SB2 или SB3 и удерживая ее, кнопками SB4 или SB5 установить необходимое время. С вывода 28 сигнал будильника поступает на транзистор VT8, нагрузкой которого является дроссель L5 и пьезокерамический звукоизлучатель НА1. На транзисторах VT1...VT5 собрана схема защиты микросхемы IC1 от неправильной полярности источника питания. Это только две схемы, есть и другие варианты, с УНЧ на ИМС, работающей на динамик, с фонариками и прочие.

Электронная настройка (с помощью варикапов) по сравнению с настройкой переменным конденсатором имеет множество преимуществ. Это «дистанционность», то есть возможность орган настройки, которым является переменный резистор, расположить в любом удобном с точки зрения пользователя месте. Отсутствие влияния рук или других внешних емкостей на настройку, так как сам контур надежно экранирован, а с окружающей средой контактирует только источник постоянного регулируемого напряжения.

Это и возможность осуществления настройки при помощи цифровой схемы, микроконтроллера или переключателя резисторов (вариант с фиксированными настройками). А при ручной настройке легко получить очень хорошее замедление если использовать многооборотный переменный резистор. Для электронной настройки желательно и шкалу сделать электронной, чтобы вообще не было никаких механических деталей, кроме переменного резистора. В принципе существуют микросхемы-поликомпараторы для применения в светодиодных индикаторах уровня или постоянного напряжения.

Шкалу можно сделать на такой микросхеме, но число светодиодов обычно не более 10. То есть, есть только десять точек, что при работе, например, на КВ, явно мало, так как шкала получается очень грубой. Здесь дана схема линейной шкалы настройки из 40 светодиодов. 40 точек - это уже достаточно и для КВ диапазона. Шкала состоит из четырех линейных светодиодных матриц по 10 прямоугольных светодиодов в каждой. А управляются они четырьмя микросхемами LM3914 .

Микросхемы включены так, что бы они работали каскадно-последовательно, образуя общую шкалу длиной в 40 светодиодов. Фактически схема представляет собой 40-уровневый светодиодный индикатор входного постоянного напряжения, которое поступает на варикап. Так как напряжение на варикапах редко изменяется от нуля, то в схеме есть возможность установки верхнего и нижнего порогов напряжения, что бы установить края пределов настройки. Нижний предел устанавливается резистором R1, а верхний - резистором R5. Максимальное входное напряжение - 5V, поэтому, если напряжение на варикапах значительно выше, - необходимо на входе сделать обычный делитель напряжения. Установка последовательной работы определена резисторами R2-R4. Светодиодные матрицы можно использовать любого типа, или вместо них установить обычные светодиоды, - любые индикаторные. Напряжение питания может быть ниже 12V.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png