Кафедра технологии машиностроения

Контрольная работа

по дисциплине «Технология машиностроения»

на тему: Технология и оборудования термической обработки в машиностроение

Новосибирск

Введение………………………………………………………………………...3

1. Технология термической обработки …….………………………………..4

1.1 .Отжиг стали …………………………………………………………………4

1.2 .Нормализация стали.…...………………………………………………….7

1.3 .Закалка стали …………………………………..……………………………7

1.4 .Обработка стали холодом …………………………..……………………...9

1.5 .Отпуск закаленной стали ………………………………………………… 9

2. Термическая обработка чугунов ………………………………………...10

2.1 .Отжиг чугуна ……………..……………………………………………..…10

2.2 .Нормализация чугуна.................................................................................12

2.3 .Закалка чугуна..………………………………………………………..… 13

2.4 .Отпуск……………………………………………………………………...14

3. Технология термической обработки цветных металлов…………………14

3.1 .Алюминий и его сплавы……………………………………………………14

3.2 .Титан и его сплавы…………………………………………………………17

3.3 .Магний и его сплавы………………………………………………………. 18

3.4 .Медь и его сплавы…………………………………………………………..19

4. Оборудования для термической обработки………………………………..19

Заключение……………………………………………………………………...24

Список литературы……………………………………………………………...25


Введение

В развитии машиностроительной промышленности значитель­ная роль принадлежит термистам, так как термическая обработка является одной из основных, наиболее важных операций общего технологического цикла обработки, от правильного выполнения которой зависит качество (механические и физико-химические свойства) изготовляемых деталей машин и механизмов, инстру­мента и другой продукции.

Перспективным направлением совершенствования технологии термической обработки является интенсификация процессов на­грева, установка агрегатов для термической обработки в механи­ческих цехах, создание автоматических линий с включением в них процессов термической обработки, а также и разработка методов, обеспечивающих повышение прочностных свойств металлических материалов и эксплуатационных свойств деталей, их надежности и долговечности. Только изучив теорию и практику термической обработки металлов, термист может успешно работать на современ­ных машиностроительных заводах, успешно внедрять в техноло­гию термической обработки новейшие достижения науки и тех­ники, бороться за механизацию и автоматизацию технологических процессов.

Целью работы является рассмотрение оборудования и технологии термической обработки.


1. Технология термической обработки стали

1.1. Отжиг стали

Отжигом называют вид термической обработки состоящий в нагреве стали до определенной температуры, выдержке и медленном охлаждении.

В процессе отливки, прокатки или ковки стальные заготовки охлаждаются неравномерно, что приводит к неоднородности структуры и свойств, возникновению внутренних напряжений. Для устранения различного рода структурных неоднородностей проводят отжиг.

Различают несколько видов отжига различающихся по технологии выполнения и цели. Для измельчения зерна перегретой стали, снижения твердости и улучшения обрабатываемости резанием применяют полный, неполный, изотермический отжиги и отжиг на зернистый перлит. Для уменьшения внутреннего напряжения, снижения твердости, повышения пластичности и изменения формы зерен холоднодеформированного металла применяют рекристаллизационный отжиг. Для устранения внутрикристаллитной ликвации в легированных сталях - высокотемпературный диффузионный отжиг .

Температурные интервалы основных видов отжига для углеродистых сталей представлены на рис.1.

Рис. 1. Температурные интервалы нагрева различных видов отжига:

1 – полный и изотермический; 2 – неполный; 3 – отжиг на зернистый перлит; 4 – рекристаллизационный.

Полный отжиг проводится для доэвтектоидных и эвтектоидных сталей. Температура нагрева на 30°-50°С выше А3, т.е. структуру полностью переводят в аустенитное состояние. После выдержки сталь медленно охлаждают в печи. Скорость охлаждения углеродистых сталей 100-150 °С/час, легированных - 30-40 °С/час. Структура стали после полного отжига получается феррито-перлитная, т.е. такая, как по диаграмме Fe-C.

Неполный отжиг проводят практически для инструментальных заэвтектоидных сталей, только в том случае, если в структуре нет цементита по границам зерен (сетка цементита). Если есть сетка цементита, то для ее устранения применяют нормализацию, что будет рассмотрено ниже. Температура нагрева на 30°-50°С выше А1 (750°-780°С). При нагреве структура будет состоять из аустенита и цементита, после медленного охлаждения из перлита и цементита.

Изотермический отжиг проводят с той же целью, что и полный, но время на его проведение требуется меньше (рис.2) .

Рис. 2. Режим охлаждения при изотермическом (1) и полном отжиге (2).

После нагрева до температуры на 30°-50°С выше А1, выдержке для выравнивания температуры по сечению, сталь подстуживают немного ниже А1 (650°-700°С) и выдерживают при этой температуре до полного распада аустенита на феррит и перлит, дальнейшее охлаждение с любой скоростью.

В отличие от других видов отжига здесь распад аустенита проходит не при непрерывном охлаждении, а в изотермических условиях (при постоянной температуре). Проводить такой отжиг проще, т.к. контролировать температуру легче, чем скорость охлаждения.

Изотермический отжиг обычно применяют для легированных сталей обладающих высокой устойчивостью аустенита (кривая изотермического распада сильно сдвинута вправо). Такой отжиг можно применять только для мелких заготовок, у которых температура по сечению выравнивается сравнительно быстро.

Отжиг на зернистый перлит проводят с целью улучшить обрабатываемость резанием за счет снижения твердости при переводе пластинчатого перлита в зернистый. Такой отжиг применяют для эвтектоидной и заэвтектоидных сталей (при отсутствии сетки цементита) .

Отжиг проводят по одному из следующих режимов:

1. Нагрев на 20°-30°С выше А1, выдержка 3-5 часов, медленное охлаждение

2. Нагрев до тех же температур с небольшой выдержкой, охлаждение до 600°С, снова нагрев до 740°-750°С и снова охлаждение до 600°С. Такие циклы нагрева и подтуживания повторяют 2-4 раза, т.е. проводят как бы покачивание температуры стали около А1. Поэтому такой отжиг называют еще маятником отжигом. Графически режим маятникового отжига представлен на рис.3 .

Отжиг рекристаллизационный применяют для снижения прочности, твердости, повышения пластичности и устранения вытянутости зерен после холодной пластической деформации (например, промежуточные отжиги при волочении проволоки). Такому отжигу подвергают малоуглеродистые стали, так как высокоуглеродистые стали в холодном состоянии деформируются плохо и их такой обработке практически не подвергают.

Нагрев при этом отжиге проводят ниже температуры А1 до 600°-700°С с последующим охлаждением в печи или на воздухе. При этом временное сопротивление разрыву (высокое после деформации) снижается, а пластичность растет.

1.2. Нормализация стали

Нормализация заключается в нагреве стали на 30°-50°С выше критических температур А3 и Асм (рис.4) с последующим охлаждением на воздухе .

Рис. 4. Фрагмент диаграммы Fe-C

Цель нормализации доэвтектоидных конструкционных сталей несколько повысить прочность (по сравнению с прочностью после отжига) за счет измельчения структурных составляющих (феррита и перлита).

Цель нормализации заэвтектоидных инструментальных сталей - устранить цементитную сетку по границам перлитных зерен и тем самым предотвратить повышенную хрупкость стали при последующей закалке .

1.3. Закалка стали

Закалка - вид термической обработки состоящий в нагреве стали до определенных температур (доэвтектоидных на 30°-40°С выше А3, заэвтектоидных на 30°-40°С выше А1), выдержке и быстром охлаждении, со скоростью более верхней критической.

Цель закалки - повысить твердость, прочность, износоустойчивость.

Скорость охлаждения при закалке обычно задают охлаждающей средой (вода, масло, специальные среды).

Используются несколько способов закалки, которые классифицируются по методу охлаждения. Закалка в одном охладителе (воде или масле). Наиболее простой и распространенный способ. Однако некоторые стали при охлаждении в воде склонны к возникновению трещин. При охлаждении в масле скорость охлаждения меньше, но многие стали при таком охлаждении не закаливаются (скорость охлаждения меньше Vвкз и мартенсит не образуется).

Закалка в двух охладителях (через воду в масло)

При этом методе в верхнем интервале температур скорость охлаждения велика, но сталь достаточно пластична и значительных напряжений не возникает. В области же мартенситного превращения (ниже 300°С) скорость охлаждения при переносе детали в масло значительно меньше, что практически исключает образование трещин. Твердость при таком методе закалки такая же, как при закалке в воде.

Ступенчатая закалка заключается в том, что после нагрева детали переносят в печь-ванну с расплавом щелочей (обычно КОН+NaOH). Нагретую до температуры немного выше начала образования мартенсита (350°-400°С), выдерживают небольшое время для выравнивания температуры по сечению, а затем охлаждают в масле или на воздухе. Твердость после такой закалки такая же, как и в предыдущих способах, но напряжения и вероятность образования трещин еще меньше. Ступенчатая закалка применяется только для мелких изделий (до 10 мм) из углеродистых сталей. Для более крупных деталей ее не применяют, так как в расплаве щелочей скорость охлаждения внутри детали мала.

Изотермическая закалка проводится так же как и ступенчатая, но в расплаве щелочей детали выдерживают более длительное время (до полного распада аустенита на бейнит). При этом существенных напряжений не возникает, но твердость получается ниже, чем при других способах закалки. Преимуществом этого способа является то, что после него не требуется отпуска. Изотермическая закалка обычно применяется для деталей сложной формы, склонных к деформациям и образованию трещин .

Все рассмотренные способы закалки показаны на диаграмме распада переохлажденного аустенита на рис.5 .

Рис.5. Различные способы закалки: 1 – в одном охладителе, 2 – в двух охладителях, 3 – ступенчатая, 4 - изотермическая

1.4. Обработка стали холодом

Обработку стали холодом применяют для уменьшения количества остаточного аустенита в закаленных высокоуглеродистых сталях. При охлаждении до -70..-190°С остаточный аустенит превращается в мартенсит.

Обработку холодом проводят непосредственно после закалки путем погружения изделий в смесь авиационного бензина с жидким азотом на 1-1,5 часа.

Обработка холодом обычно применяется:

1. Для инструмента из быстрорежущих сталей и деталей

шарикоподшипников с целью повышения твердости;

2. Для улучшения свойств постоянных магнитов;

3. Для стабилизации размеров точного измерительного инструмента (например, калибров) .

1.5. Отпуск закаленной стали

Отпуск - вид термической обработки состоящий в нагреве закаленной стали до температур ниже А1, выдержке и охлаждении в воде или на воздухе.

Отпуску подвергают все закаленные стали с целью уменьшения внутренних напряжений, повышения ударной вязкости при некотором снижении твердости и прочности.

В зависимости от требований предъявляемых к изделиям их подвергают отпуску при различных температурах.

Низкий отпуск (150°-220°С) проводится с целью чуть-чуть снизить остаточные напряжения без существенного снижения твердости. Применяется для металлорежущего инструмента из высокоуглеродистых сталей и деталей работающих на истирание (например, шестерни). Получаемая структура - отпущенный мартенсит.

Средний отпуск (300°-500°С) проводят с целью более полно снять напряжения и повысить ударную вязкость за счет более значительного снижения твердости. Применяется для деревообрабатывающего инструмента, рессор, пружин, штампов. Получаемая структура - тростит отпуска.

Высокий отпуск (500°-680°С) проводят обычно для деталей из легированных сталей с целью получить хорошее сочетание прочности и ударной вязкости .

2.Термическая обработка чугунов.

Термическую обработку чугунов проводят с целью снятия внутренних напряжений, которые возникают при литье и вызывают изменения размеров и формы отливки с течением времени, снижение твёрдости и улучшение обрабатываемости резанием, повышение механических свойств.

Чугун подвергают отжигу, нормализации, закалке и отпуску, а также некоторым видам химико-термической обработки (азотированию, алитированию, хромированию) .

Отжигу для снятия внутренних напряжений подвергают чугуны при следующих температурах:

­- серый чугун с пластинчатым графитом 500° –570°С;

Высокопрочный с шаровидным графитом 550° – 650°С;

Низколигированный 570° – 600°С;

Высоколигированный чугун (типа нирезист) 620° – 650°С.

Нагрев медленный со скоростью 70° – 100°С/ час, выдержка при температуре нагрева зависит от массы и конструкции отливки и составляет от 1-го до 8-ми часов. Охлаждение до 250°С (для предупреждения возникновения термических напряжений) медленное, со скоростью 20° – 50°С /ч, что достигается охлаждением отливки вместе с печью. Далее отливки охлаждают на воздухе.

При этом отжиге фазовых превращений не происходит, а снимаются внутренние превращения, повышается вязкость, исключается коробление и образование трещин в процессе эксплуатации.

Графитизирующий отжиг применяют для получения ковкого чугуна из белого чугуна и для устранения отбела отливок из серого чугуна.

Графитизацию при температурах выше критической можно представить следующим образом:

Цементит → аустенит и графит .

Процесс графитиззации начинается с возникновения графитных центров, которые наиболее легко зарождаются в местах нарушения сплошности – в закалочных и деформационных микротрещинах, усадочных микропорах. В исходном состоянии белый доэвтектический чугун имеет структуру, которая состоит из перлита, вторичного и эвтектического цементита. При переходе через эвтектоидный интервал температур перлит превращается в аустенит, а при повышении температуры до 950°-1000°С происходит распад цементита (эвтектического и вторичного) и образуется структура аустенит и графит. Этот процесс называют первой стадией графитизации.

Полной графитизации, то есть получения структуры, которая состоит из перлита и графита, можно достигнуть охлаждением чугуна;

1. в эвтектоидном интервале температур с такой скоростью, чтобы происходил прямой эвтектоидный распад аустенита на феррит и графит

(А → Ф + Г);

2. немного ниже эвтектоидного интервала температур с образованием из аустенита перлита с выдержкой при этой температуре для графитизации эвтектоидного цементита (Ц → Ф + Г).

И в том и в другом случае будет получаться структура феррит и графит; этот процесс называют второй стадией графитизации.

Отжиг с предварительной закалкой заключается в том, что белый чугун подвергают закалке с 900°-950°С в воде или масле. При закалке, во время мартенситного превращения, образуются многочисленные микротрещины, в которых наиболее легко зарождаются центры графитизации.

Отжиг с предварительной низкотемпературной выдержкой заключается в том, что белый чугун выдерживают в течении 6-ти - 8-ми часов при температуре 350°-400°С. Число центров графитизации увеличивается, и сокращается время отжига. Механизм влияния низкотемпературной выдержки ещё не установлен.

Низкотемпературный отжиг применяют для снятия внутренних остаточных напряжений отливок серого чугуна. Данный отжиг проводят по следующему режиму: медленный нагрев отливок (30°-180°С/ч) до 530°-620°С, выдержка при этой температуре 1-4 часа (с момента нагрева до заданной температуры наиболее толстого сечения отливки) и медленное охлаждение вместе с печью со скоростью 10°-30°С/ч до 250°-400°С. В результате такого отжига внутренние остаточные напряжения уменьшаются на 80-85% и увеличивается количество феррита .

2.2 Нормализация

Нормализацию применяют для увеличения связанного углерода, повышения твердости, прочности и износостойкости серого, ковкого и высокопрочного чугунов. При нормализации чугун нагревают выше температур интервала превращения (850°-950°С) и после выдержки в течение 0.5-3.0 часа, при которой должно произойти насыщение аустенита углеродом, охлаждают на воздухе.

Растворение графита в Y-фазе является важным процессом при нормализации чугуна с ферритной или феррито-перлитной структурой. Этот процесс подобен цементации стали; разница в том, что при цементации происходит насыщение поверхностного слоя стальной детали углеродом из внешней среды, а при нагреве чугунной отливки «карбюризатором» являются многочисленные включения графита, расположенные в металлической основе, и насыщение углеродом происходит во всём объёме отливки .

2.3 Закалка

При закалке чугуна превращения аналогичны превращениям, происходящим при закалке стали. Но в связи с наличием в чугуне включений графита закалка чугунов имеет следующие особенности.

Закалка проводится из двухфазного аустенито-графитного состояния.

При нагреве происходит растворение графита в аустените, в связи с чем, несмотря на различную исходную структуру чугуна, превращению при охлаждении подвергается аустенит с эвтектоидной или заэвтектоидной концентрацией углерода. Закалке подвергают серый, ковкий и высокопрочный чугун для повышения твёрдости, прочности и износостойкости. По способу выполнения закалка чугуна может быть объёмной непрерывной, изотермической и поверхностной.

При объёмной непрерывной закалке чугун нагревают под закалку (медленно для отливок сложной конфигурации) до температуры на 40° – 60°С выше интервала превращения (обычно до 850° – 930°С) с получением структуры аустенит и графит. Затем дают выдержку для прогрева и насыщения аустенита углеродом; выдержка тем длиннее, чем больше феррита и меньше перлита, например, 10 – 15 мин для перлитных чугунов и до 1,5 – 2 часа для ферритных чугунов. Отливки охлаждают в воде (простой конфигурации) или в масле (сложной конфигурации).

При изотермической закалке чугун нагревают до 830° – 900°С выдерживают 0,2 – 1,5 часа и охлаждают в расплавленных солях, имеющих температуру 250° – 400°С, и после выдержки охлаждают на воздухе. Структура чугуна после изотермической закалки состоит из бейнита, остаточного аустенита и графита. Преимущество изотермической закалки – резкое уменьшение закалочных напряжений и коробления.

Поверхностную закалку с нагревом с помощью токов высокой частоты применяют для повышения поверхностной твёрдости и износостойкости чугунных отливок. Поверхностной закалке рекомендуется подвергать перлитные чугуны. Это объясняется тем, что при нагреве перлитных чугунов нет необходимости в насыщении аустенита углеродом за счёт растворения графита. Превращения, происходящие при поверхностной закалке таких чугунов, аналогичны превращениям при поверхностной закалке перлитных чугунов 840° – 950°С, время нагрева – несколько секунд, скорость нагрева около 400°С/с, охлаждение в воде или эмульсии. Микроструктура поверхностного слоя – мелкоигольчатый мартенсит и включения графита. После поверхностной закалки проводится низкий отпуск. Поверхностной высокочастотной закалке подвергают детали из перлитного чугуна, работающие на износ – направляющие станин станков (изготовляемые из модифицированного серого чугуна), коленчатые и кулачковые валы (из высокопрочного чугуна), гильзы цилиндров (из легированного чугуна) и другие детали .

2.4 Отпуск

Отпуск проводится с целью снятия термических напряжений, повышения твёрдости, прочности и износостойкости. Нагрев проводят медленный для

сложных изделий до температуры 150° – 300°С для деталей работающих на износ или 400° – 600°С, затем дают выдержку 1 – 3 часа. Охлаждение проводят на воздухе .

3. Технология термической обработки цветных металлов.

3.1Алюминий и его сплавы

подвергают различным видам термической обработки в зависимости от состава сплавов, вида полуфабрикатов, деталей и заготовок, а также их назначения. В алюминии нет полиморфного и мартенситного превращений. Поэтому для алюминиевых сплавов виды термической обработки, связанные с этими превращениями, исключены.

Отличительная особенность алюминия заключается в его высокой теплопроводности, поэтому проблема прокаливаемости имеет важного значения. Склонность алюминия и его сплавов к взаимодействию с газами, составляющими атмосферу печи, невелика. Поэтому не возникало особой необходимости.

Наибольшее распространение для алюминиевых сплавов получили три вида термической обработки: отжиг, закалка и старение.

Отжиг. Отжиг алюминиевых сплавов применяют в том случае, когда необходимо ликвидировать нежелательные последствия, связанные с неравновесностью структуры. Наиболее часто при неравновесной структуре наблюдается пониженная пластичность, низкая коррозионная стойкость и недостаточная деформационная способность. Применительно к алюминиевым сплавам наиболее распространены следующие ее разновидности:

1. Неравновесное состояние, свойственное литым сплавам. При получении слитков и отливок скорости охлаждения достаточно высоки, и поэтому кристаллизация протекает в неравновесных условиях, что приводит к явлениям дендритной ликвации компонентов сплава. При этом легирующие компоненты в примеси распределяются неравномерно по объему литых зерен, а на границах появляются неравновесные интерметаллические фазы. Такой характер структуры обусловливает низкую технологическую пластичность сплавов и малую коррозионную стойкость.

2. Неравновесное состояние, вызванное пластической деформацией, при которой происходят существенные структурные изменения, часть энергии деформации поглощается, и свободна" энергия системы повышается.

3. Неравновесное состояние, являющееся результатом предыдущей термической обработки. Основная особенность такого состояния - присутствие в сплаве более или менее пересышеного легирующими компонентами твердого раствора на основе алюминия.

4. Неравновесное состояние, вызванное остаточными напряжениями в объеме металла.

При отжиге, основными параметрами которого являются температура и скорость нагрева, а также продолжительность выдержки при заданной температуре, все рассмотренные выше отклонения от равновесного состояния могут быть устранены. При этом пластичность сплавов всегда возрастает.

Для алюминиевых сплавов применяют следующие виды отжига: гомогенизационный отжиг, рекристаллизационный отжиг деформированных полуфабрикатов, отжиг термически упрочненных сплавов для разупрочнения и отжиг для снятия остаточных напряжений .

Закалка. Сущность процесса состоит в нагреве сплавов до температур, достаточных для растворения низкотемпературных фаз, выдержке при этих температурах и охлаждении со скоростями, обеспечивающими отсутствие процессов распада.

Температуру нагрева под закалку выбирают в зависимости от природы сплава. Так как растворение неравновесных фазовых процессов - диффузионный, то температура закалки должна быть возможности высокой. Она не может превышать темпера неравновесного солидуса сплавов из-за возникновения пережога, резко снижающего механические свойства. Продолжительность выдержки при температуре нагрева под закалку определяется скоростью растворения легирующих элементов, входящих в избыточные фазы, и зависит от природы сплава, его структурного состояния и условий нагрева. Скорости охлаждения при закалке должны обеспечивать фиксацию в твердом растворе концентраций легирующих компонентов, свойственных высоким температурам. При выборе охлаждающей среды необходимо принимать во внимание и толщину изделий .

Старение. Старение применяют для повышения прочностных характеристик алюминиевых сплавов. Для этого можно использовать естественное и искусственное старение.

Изменения структуры и свойств определяются разными механизмами распада в зависимости от температуры и времени старения. При низких температурах или коротких временах выдержки упрочнение связано с образованием зон Гинье -Престона (ГП) (рис.6) .

Рис.6 Схема зоны Гинье-Престона (по Герольду): белые кружки - атомы алюминия; черные - атомы меди

Этот вид старения, являющийся основным для сплавов типа дуралюмина, называют зонным старением. С увеличением температуры старения или времени выдержки может проявиться другой механизм упрочнения, когда оно достигается вследствие выделения из твердого раствора метастабильных фаз, которые имеют с матрицей когерентные или полукогерентные границы. Такое старение, протекающее обычно при повышенных температурах, называют фазовым старением:

Дальнейшее увеличение времени старения приводит к тому, что образуются выделения стабильных фаз, имеющие с матрицей некогерентные границы. Коагуляция этих фаз разупрочняет сплавы, и соответствующий вид старения называют коагуляционным старением.

Возврат при старении. Этот вид термической обработки применяют к закаленным и естественно состаренным алюминиевым сплавам. Сущность этого вида термообработки сводится к следующему. Если естественно состаренный сплав алюминия нагреть на очень короткий промежуток времени до температур, превышающих линию сольвуса для зон Гинье - Престона, то зоны растворяются, а процессы фазового старения еще не успевают протекать. При последующем быстром охлаждении структура и свойства сплава соответствуют свежезакаленному состоянию .

3.2 Титан и его сплавы

Титан серебристо-белый легкий металл с плотностью 4,5 г/см³. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680°С.

Чистый иодидный титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %.

При температуре 882°С титан претерпевает полиморфное превращение, титан с гексагональной решеткой переходит в – титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки.

Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах (не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500°С становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.

Титановые сплавы имеют ряд преимуществ по сравнению с другими:

Сочетание высокой прочности( МПа)с хорошей пластичностью ;

Малая плотность, обеспечивающая высокую удельную прочность;

Хорошая жаропрочность, до 600…700°С;

Высокая коррозионная стойкость в агрессивных средах.

Однородные титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур .

3.3 Магний и его сплавы

Магний – очень легкий металл, его плотность – 1,74 г/см³. Температура плавления – 650°С. Магний имеет гексагональную плотноупакованную кристаллическую решетку. Очень активен химически, вплоть до самовозгорания на воздухе. Механические свойства технически чистого магния (Мг1): предел прочности – 190 МПа, относительное удлинение – 18 %, модуль упругости – 4500 МПа. Основными магниевыми сплавами являются сплавы магния с алюминием, цинком, марганцем, цирконием. Сплавы делятся на деформируемые и литейные. Сплавы упрочняются после закалки и искусственного старения. Закалку проводят от температуры 380…420°С, старение при температуре 260…300°С в течение 10…24 часов. Особенностью является длительная выдержка под закалку – 4…24 часа .

3.4 Медь и ее сплавы

Медь имеет гранецентрированную кубическую решетку. Плотность меди 8,94 г/см³, температура плавления 1083°С. Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu). Механические свойства меди относительно низкие: предел прочности составляет 150…200 МПа, относительное удлинение – 15…25 %. Поэтому в качестве конструкционного материала медь применяется редко. Повышение механических свойств достигается созданием различных сплавов на основе меди. Различают две группы медных сплавов: латуни – сплавы меди с цинком, бронзы – сплавы меди с другими (кроме цинка) элементами .

4. Оборудование для термической обработки

К основному оборудованию для термиче­ской обработки относятся печи, нагрева­тельные установки и охлаждающие устрой­ства. По источнику теплоты печи подразде­ляют на электрические и топливные (газовые и редко - мазутные).

Для того чтобы избежать окисления и обез­углероживания стальных деталей при нагре­ве, рабочее пространство современных тер­мических печей заполняют специальными защитными газовыми средами или нагрева­тельную камеру вакуумируют. Для повыше­ния производительности при термической обработке мелких деталей машин и прибо­ров применяют скоростной нагрев, т. е. за­гружают их в окончательно нагретую печь. Возникающие при нагреве временные теп­ловые напряжения не вызывают образования трещин и короблений. Однако скоростной нагрев опасен для крупных деталей (про­катных валков, валов и корпусных деталей), поэтому нагрев таких деталей производят медленно (вместе с печью) или ступенчато. Иногда быстрый нагрев производят в печах-ваннах с расплавленной солью (сверла, мет­чики и другие мелкие инструменты). На ма­шиностроительных заводах для термической обработки применяют механизированные пе­чи (рис. 7) и автоматизированные агрегаты .

Рис. 7. Механизированная электропечь:

1 - нагревательная камера; 2 - закалочная камера; 3 - подъемный столик; 4 - вентилятор; 5 - нагрева­тели; 6 - цепной механизм для передвижения поддона с деталями

Механизированная электропечь предназна­чена для закалки штампов или мелких дета­лей, укладываемых на поддон. Нагреватель­ную и закалочную камеру можно заполнять защитной атмосферой, предохраняющей за­каливаемые детали от окисления и обезугле­роживания. С помощью цепного механизма 6 поддон с деталями по направляющим ро­ликам перемещают в нагревательную камеру 1. После нагревания и выдержки тем же цепным механизмом поддон перемещают в закалочную камеру 2 и вместе со столиком 3 погружают в закалочную жидкость (масло или воду). После охлаждения столик подни­мается пневмомеханизмом, и поддон выгру­жается из печи. Детали нагреваются в ре­зультате излучения электронагревателей 5 и конвективного теплообмена. Вентиляторы 4, установленные в нагревательной камере и в закалочном баке, предназначены для ин­тенсификации теплообмена и равномерного нагрева и охлаждения деталей.

В механизированных и автоматизиро­ванных агрегатах проводят весь цикл термической обработки деталей, например, закалку и отпуск. Такие агрегаты состоят из механи­зированных нагревательных печей и зака­лочных баков, моечных машин и транс­портных устройств конвейерного типа. Поверхностный нагрев деталей производят тогда, когда в результате поверхностной за­калки требуется получить высокую твер­дость наружных слоев при сохранении мяг­кой сердцевины. Чаще всего закаливают наружный слой трущихся деталей машин. Наиболее совершенным способом поверх­ностной закалки является закалка в спе­циальных установках с нагревом токами вы­сокой частоты ТВЧ. Этот способ нагрева очень производителен, может быть пол­ностью автоматизирован и позволяет полу­чать при крупносерийном производстве ста­бильное высокое качество закаливаемых из­делий при минимальном их короблении и окислении поверхности. Известно, что с увеличением частоты тока возрастает скин-эффект; плотность тока в наружных слоях проводника оказывается во много раз большей, чем в сердцевине. В результате почти вся тепловая энергия

выделяется в поверхностном слое и вызывает его разогрев. Нагрев деталей ТВЧ осуществляется ин­дуктором. Если деталь имеет небольшую длину (высоту), то вся ее поверхность может быть одновременно нагрета до температуры закалки. Если же деталь длинная (рис. 8), нагрев происходит последовательно путем перемещения изделия относительно индукто­ра с рассчитанной скоростью .

Рис. 8. Расположение индуктора, закали­ваемой цилиндрической детали и спрейера при закалке с нагревом ТВЧ:

I - деталь; 2 - индуктор; 3 - спрейер

Охлаждение при закалке с нагревом ТВЧ обычно осуществляется водой, подающейся через спрейер трубку с отверстиями для разбрызгивания воды, изогнутую в кольцо и расположенную относительно детали ана­логично индуктору. Нагретый в индукторе участок детали или все изделие, переме­щаясь, попадает в спрейер, где и охлаждает­ся. Преимущество поверхностной закалки де­талей, так же как и большинства способов упрочнения поверхности (химико-термиче­ской обработки, поверхностного наклепа об­катки), состоит также в том, что в поверх­ностных слоях деталей возникают значи­тельные сжимающие напряжения. В последнее время для термической обра­ботки некоторых деталей применяют источ­ники высококонцентрированной энергии (электронные и лазерные лучи).

Использование импульсных электронных пучков и лазерных лучей для локального на­грева поверхности деталей позволяет вести поверхностную закалку рабочих кромок ин­струментов и сильно изнашивающихся обла­стей корпусных деталей. Иногда тонкий по­верхностный слой доводят до оплавления и в результате быстрого охлаждения полу­чают мелкозернистую или аморфную струк­туру.

При закалке с использованием источников высококонцентрированной энергии не тре­буются охлаждающие среды, так как локаль­но нагретые поверхностные слои очень бы­стро остывают в результате отвода теплоты в холодную массу детали. В качестве источ­ников энергии используют ускорители элект­ронов и непрерывные газовые и импульсные лазеры .

Заключение

В данной работе были рассмотрены основные виды термических обработок, различных материалов, и оборудования применяемое в производстве.

Непрерывное улучшение качества, повышение производительно­сти, надежности и долговечности машин в значительной степени оп­ределяется прогрессом технологии, важнейшим этапом которой яв­ляется термическая обработка, формирующая окончательные, экс­плуатационные свойства металлов.

Основными материалами, которые подвергаются термической обработки являются сталь, чугун, цветные металлы и их сплавы.

Совершенствование процессов термической обработки наряду с правильным выбором материалов для конкретных условий эксплуа­тации приводит к уменьшению металлоемкости изделий, снижению трудоемкости их изготовления, экономии материальных и энергети­ческих ресурсов, повышению производительности труда.

Важным фактором является выбор правильного технологического режима, который включает себя: отжиг, нормализация, отпуск, старения и т.д

Список литературы

1. Технология термической обработки метала / А.И. Самохоцкий, Н.Г. Парфеновская. – М.: Машиностроение, 1976.

2. Блюм Э.Э., Потехин Б.А., Резников В.Г [Электронный ресурс] // Основы термической обработки сталей /Свободный доступ из сети Интернет. - http://tmetall.narod.ru/mater/materpos/konspekt1.html

3. Седов Ю.Е., Адаскин А.М. Справочник молодого термиста – М: “Высшая школа”, 1986, с. 113.

4. Материаловедение:Учебник для высших техни­ческих учебных заведений./ Б. Н. Арзамасов, И. И. Сидорин, Г. Ф. Косолапое и др.; Под общ. ред. Б. Н. Арзамасова.- 2-е изд., испр. и доп.- М.: Машиностроение, 1986.-384 с, ил.

5. Третьякова Н.В [Электронный ресурс] // Материаловедение /Свободный доступ из сети Интернет. - http://elib.ispu.ru/library/lessons/tretjakova/index.html

Термическая обработка металлов - переработка металлического материала при помощи теплового воздействия. Термический способ работы с металлами используют для того, чтобы добиться приобретения материалом определенных технологических свойств и технических характеристик.

Виды и способы термической обработки металлов

Виды термической обработки металлов делятся на три категории: термомеханическая обработка, химически термическая, термический способ работы с металлическими сплавами. Все разновидности термической обработки отличаются друг от друга индивидуальными особенностями осуществления рабочего процесса. Каждая из категорий обработки имеет свой, определенный технологическими нормами, температурный режим воздействия на используемое сырье, выдержкой при обретении установленной степени накаливания и временным периодом охлаждения металлических заготовок.

И металлических сплавов в своем принципе подразумевает структурные изменения в составе обрабатываемого сырья методом сильного накаливания, последующего отстаивания и охлаждения сырьевой массы. Химико термическую обработку металлов отличает от простого термического воздействия на структуру материала добавление в поверхности металлических сплавов компонентов, которые оказывают положительное влияние на такие технические свойства материала, как его твердость, устойчивость к изнашиванию, сопротивление коррозийному уничтожению. Химический процесс термообработки требует к себе более высокого температурного режима и значительно большего периода выдержки материала.

Химико-термический способ работы с металлом, в свою очередь разделяют на цементацию (подразумевает увеличение углеродного состава стали), азотирование (металл перенасыщают азотными частицами), цианирование (параллельное увеличение углеродного и азотного состава в сплавах), легирование поверхностей. Легирование металлов, также делится на силицированное воздействие, алитированное изменение и покрытие хромом.

Термомеханический способ работы с металлической массой - один из самых молодых методов обработки стали. Такая обработка дает возможность увеличить уровень механических качеств. Процесс состоит операций, которые сочетают пластический способ деформирования материала с термическим воздействием на него.

Необходимое оборудование для термической обработки металлов

Оборудование для термической обработки металлов состоит из накаливальных приспособлений и контрольных устройств, что позволяют регулировать температурный режим в процессе осуществления рабочих операций с металлами. Также, используются измерительные приборы для фиксирования результата термического воздействия на сплав. Контрольные приспособления в комплексе термобрабатывающих устройств называют термоэлектрическими пирометрами. Такие измерительные механизмы состоят термических пар и специального гальванометра, на котором установлена градусная шкала Цельсия. Конечный результат воздействия на металл проверяется напильниковой пробой, и испытывают вязкие свойства ударным способом.

Печи для термической обработки металлов, на металлообрабатывающих предприятиях, используют пламенного типа и с электрическим принципом смены температурного режима. Для печей пламенного типа применяется в качестве топливного ресурса жидкие, твердые, газообразные горючие средства. Электрические печные установки для работы со стальными сплавами делят на два вида: печи сопротивления и приспособления, работающие на индукционном способе нагревания. образуется под воздействием высокочастотного тока.

Печи для термической обработки металлов могут работать в беспрерывном режиме и с прерывающимся функциональным циклом. Топливная масса заполняет устройство через специальный кран, а нагретая воздушная масса запускается через воздуховодную камеру. Металлическое сырье разогревается в рабочей зоне приспособления. Образовавшиеся при этом накаленные газовые компоненты убираются при помощи рекуператора, который выполняет функцию постоянного подогрева воздушной массы. В случае периодической эксплуатации камерного приспособления для нагревания стали, в рабочем секторе устройство температурный режим поддерживается на едином уровне.

К термическому способу обработки, чаще всего, прибегают при работе со сталью. Но также, для улучшения технических характеристик и технологических свойств, в отдельных случаях, такой способ могут использовать в работе с чугунными изделиями и конструкциями, выполненными из цветных металлов. Для охлаждения уже прошедших обработку изделий используют специальные емкости, которые наполняют жидкостной массой (расплавленные свинцовые компоненты, масляные средства, водные наполнители).


Короткий путь http://bibt.ru <<Предыдущая страница Оглавление книги Следующая страница>>

Оборудование для термической обработки.

Оборудование термических цехов состоит из нагревательных печей, закалочных устройств (баки, прессы, приспособления), установок для очистки обработанных деталей (пескоструйные установки), правильных устройств, приборов для контроля температуры в печах и ваннах, а также контрольных приборов для проверки качества обработанных деталей.

Термические печи по конструкции подразделяют на печи периодического действия и непрерывного действия: по назначению печи для отжига, нормализации, закалки, отпуска, азотирования, цементации, цианирования; по виду применяемого топлива —на печи, работающие на жидком и газообразном топливе и электрические; по характеру среды в рабочем пространстве: на печи с воздушной средой и продуктами горения, с защитной газовой средой, печи-ванны (соляные, свинцовые, масляные).

Рис. 38. :

1 - муфель реторты; 2 - основание реторты; 3 — приспособление (корзина) для загрузки деталей; 4 — подставка под корзину; 5 — трубка для ввода карбюризатора; 6 — трубка для ввода газа; 7 - вентилятор; 8 — пружина сальника; 9 — нажимная гайка; 10 — шариковые подшипники вала вентилятора; 11 — электродвигатель вентилятора; 12 — электродвигатель для подъема крышки; 13 - болт для крепления крышки, 14 - крышка реторты; 15 - прокладка крышки; 16 - болт-17 - электросопротивление; 19 - кладка печи; 19 -термопара

При единичном и мелкосерийном производствах применяют печи периодического действия — камерные печи с неподвижным подом или с выдвижным подом. Для закалки, цементации, азотирования применяются печи шахтного типа (рис. 38). Недостатком таких печей является трудность обеспечения равномерной температуры по всей высоте печи.

При крупносерийном и массовом производствах широко применяются печи непрерывного действия (печи с вибрирующим подом, конвейерные, а также механизированные печи-ванны).

Печи непрерывного действия часто представляют собой комплексные агрегаты, осуществляющие несколько последовательных термических процессов. На рис. 39 показан агрегат для закалки, промывки и отпуска мелких деталей. Детали 1 автоматически подаются в муфель 3 печи 2. После нагрева они сбрасываются в закалочный бак 4, далее винтовым транспортером 5 выдаются наружу, где автоматическим устройством 10 нагружаются в ковши элеватора 6 отпускной масляной ванны 7. После отпуска детали поступают в моечную машину 8, а из последней — на контрольно-сортировочный автомат 9.

Одними из основных стратегических направлений компании ЗАО «СМК» является поставка оборудования для термической и химико-термической обработки металлов , а также проектирование термических цехов и комплексный инжиниринг по подбору оборудования и технологий термообработки.

Предлагаемое нами оборудование применяется в различных отраслях промышленности - в металлургическом и литейном производстве, авиакосмической отрасли, автомобилестроении, машиностроении, на инструментальном и подшипниковом производстве, строительстве и во многих других.

Помимо поставки и запуска оборудования компания ЗАО «СМК» берет на себя гарантийное и послегарантийное обслуживание поставляемого оборудования, своевременно обеспечит расходными материалами и запасными частями.

ЗАО «Современная Машиностроительная Компания» предлагает промышленным предприятиям комплексное оснащение «под ключ» термическим оборудованием ведущих мировых производителей TENOVA LOI THERMPROCESS (Италия, Германия, ФранциЯ), а также Чешских производителей.

Технология и оборудование для термической обработки металлов

« REALISTIC » (Чехия) - крупные промышленные газовые и электрические печи, линии для комбинированной термообработки, плавильные и раздаточные печи, специальные печи.
« MAHLER » (Германия) - проходные печи для спекания порошковых материалов, отжига труб, пайки и пр. видов термообработки, печи с выкатным подом с газовым и электрическим
нагревом.
« BMI » (Франция) - горизонтальные и вертикальные вакуумные печи с газовым, масляным и комбинированным охлаждением, установки для вакуумной химико-термической обработки.
« SCHMETZ » (Германия) - горизонтальные и вертикальные вакуумные печи с газовым охлаждением.
« IVA » (Германия) - горизонтальные и вертикальные промышленные газовые и электрические печи, сложные линии для комбинированной термообработки, печи для химико-термической обработки.
«С EI A» (Италия) - современные установки ТВЧ для термообработки, пайки, плавки с преобразователями на транзисторной платформе.
« LINN HighTherm » (Германия) - камерные и ретортные печи сопротивления; индукционные печи и установки индукционного нагрева, пробоподготовка для спектроскопии; системы выращивания монокристаллов SiC; промышленные микроволновые печи; линии для получения SIC-композитного волокна, специальные печи.

Эти печи имеют полностью металлическую изоляцию с низким уровнем выделения газов, большие насосные агрегаты для создания высокого уровня вакуума и 6 зон нагрева для обеспечения однородной температуры с колебаниями не более +/-3°C.

Вакуумные печи типа BA5_ специально адаптированы для пайки теплообменников (сотообразных, пластинчатых и т.д.), сборочных узлов в авиастроительной и аэрокосмической отраслях (волноводы и др.). В качестве альтернативы печам типа BA5_, BMI также предлагает ряд печей с горячей перегородкой для пайки алюминия некоррозийным флюсом, что широко применяется в автомобильной промышленности.

Это полностью автоматизированные установки, обеспечивающие неизменно высокие результаты.

Модельный ряд

Типоразмер Ширина (мм) Высота (мм) Длина (мм) Садка (кг)
Печи с холодными перегородками для вакуумной пайки
BA53 450 450 600 150
BA54 700 600 900 300
BA55 800 800 1200 400
BA56 1000 1000 1500 600
Печи с горячими перегородками для пайки флюсом
BA43 450 450 600 150
BA44 600 600 900 300
BA45 900 900 900 400

B5_T (печь для пайки/обжига при высокой температуре).

Эта вакуумная печь может быть оборудована конвекционным теплообменом для сокращения времени нагрева и в случае необходимости для равномерной термической обработки при низких температурах (отпуска), а также уменьшения циклов вакуумного отжига, который часто дополняет вакуумную закалку (после прохождения садки через моечную машину).

Для повышения производительности существует возможность регулирования температуры нагревательной камеры. Герметичная внутренняя дверь гарантирует отсутствие взаимодействия масляных паров и таким образом позволяет обеспечить более высокий вакуум. Эта печь оборудована полностью автоматизированной системой загрузки и выгрузки (перемещение по рельсе и забор садки посредством лифта), что сокращает время перемещения приблизительно до 25 секунд (для печи V64TH160). Установка полностью автоматизирована и обеспечивает неизменно высокие результаты, повышая, таким образом, производительность оборудования.

программному обеспечению

Клиенты, осуществляющие серийное производство, такие как подрядчики в сфере авиастроения, отдают предпочтение однокамерным печам класса B5_TH, которые предназначены исключительно для закалки на масло. Клиенты, для которых важна гибкость, например производители деталей под заказ, отдают предпочтение печи B6_TH и ее конструкции, которая позволяет одновременно осуществлять закалку газом, закалку на масло и - по заказу - цементацию. При массовом производстве, таком как производство автомобилей, наши клиенты чаще выбирают вакуумные печи типа P16_TH.

Технические параметры установки

Рабочая зона обработки: Графитовая изоляция
1050°C (дополнительно – до 1250°C)
Однородность при +/- 5°C свыше 700°C
Однородность +/-7°C на зазоре 200 – 800°C при конвекции (опционально)
Принудительное охлаждение:: 1,9 бар абс. в холодной камере (опционально)
Температура масла: регулируемая в диапазоне 40 - 80°C
Давление/скорость охлаждения: До 10 бар абс. в холодной камере (камера - по заказу)
Контроль работы установки: Интерфейс типа GRAPHTIL ®
Химико-термическая обработка: Цементация при низком давлении типа ALLCARB ® (дополнительно)

Модельный ряд

Типоразмер Диаметр (мм) Высота (мм) Садка (кг)
V64TH160 900 1600 1000
V66TH300 1500 3000 2000

: B5_TH (однокамерная печь, предназначенная для закалки на масло), B6_TH (двухкамерная печь, позволяющая выполнять закалку газом и закалку на масло), P16_TH (двухкамерная печь, предназначенная для закалки на масло и для обработки крупных садок).

Эта вакуумная печь может быть оборудована конвекционным теплообменом для сокращения времени нагрева и, в случае необходимости, для равномерной термической обработки при низких температурах, а также уменьшения циклов вакуумного отжига, который часто дополняет вакуумную закалку (после прохождения садки через моечную машину).

Для экономии энергоресурсов и повышения производительности существует возможность регулирования температуры нагревательной камеры. Герметичная внутренняя дверь гарантирует отсутствие взаимодействия масляных паров и, таким образом, позволяет обеспечить более высокий вакуум. Эта печь оборудована полностью автоматизированной системой загрузки и выгрузки при помощи микролифта, что сокращает время передачи тепла приблизительно до 30 секунд. Установка полностью автоматизирована и обеспечивает неизменно высокие результаты, повышая, таким образом, производительность оборудования.

Дополнительно BMI предлагает установить на всех печах вакуумной закалки на масло систему цементации при низком давлении типа ALLCARB ® , которая доказала свою эффективность при производстве: точность, надежность и однородность . Ее использование становится более простым благодаря программному обеспечению , позволяющему рассчитывать параметры цикла в зависимости от желаемой глубины цементации и марки стали; при этом сохраняется возможность изменять эти параметры цементации в конкретных случаях применения.

Клиенты, осуществляющие серийное производство, такие как поставщики в сфере авиастроения, отдают предпочтение однокамерным печам класса B5_TH, которые предназначены исключительно для закалки на масло. Клиенты, для которых важна гибкость, например производители деталей под заказ, отдают предпочтение печи B6_TH и ее конструкции, которая позволяет одновременно осуществлять закалку газом, закалку на масло и - по заказу - цементацию. Клиенты, которые работают с длинномерными деталями, такими как компоненты узлов приземления в авиационной промышленности, отдают предпочтение ряду вертикальных печей закалки на масло типа V6_TH.

Технические параметры установки

Модельный ряд

Смежная продукция (тот же класс печей - для обзора продукции): B5_TH (однокамерная печь, предназначенная для закалки на масло), B6_TH (двухкамерная печь, позволяющая выполнять закалку газом и закалку на масло), V6_TH (вертикальная печь для закалки на масло для обработки крупных и длиномерных деталей).

Для повышения производительности существует возможность регулирования температуры нагревательной камеры. Герметичная внутренняя дверь гарантирует отсутствие взаимодействия масляных паров и, таким образом, позволяет обеспечить более высокий вакуум. Эта печь оборудована полностью автоматизированной системой загрузки и, что сокращает время передачи тепла приблизительно до 25 секунд. Установка полностью автоматизирована и обеспечивает неизменно высокие результаты.

Дополнительно BMI предлагает установить на всех печах вакуумной закалки на масло систему цементации при низком давлении типа ALLCARB ® , которая доказала свою эффективность при производстве: точность, надежность и однородность . Ее использование становится более простым благодаря программному обеспечению , позволяющему рассчитывать параметры цикла в зависимости от желаемой глубины цементации и марки стали; при этом сохраняется возможность изменять эти параметры цементации в конкретных случаях применения.

Если закалка газом не является обязательной, клиенты, осуществляющие серийное производство, такие как поставщики для авиастроения, отдают предпочтение однокамерным печам класса B5_TH, которые предназначены исключительно для закалки на масло. При массовом производстве, например в сфере автомобилестроения, наши клиенты чаще выбирают вакуумные печи типа P16_TH. Клиенты, которые работают с длинномерными деталями, такими как компоненты узлов приземления в авиационной промышленности (шасси и т.п.), отдают предпочтение ряду вертикальных печей закалки маслом типа V6_TH.

Технические параметры установки

Модельный ряд

Дополнительно BMI предлагает установить на всех печах вакуумной закалки на масло систему цементации при низком давлении типа ALLCARB ® , которая доказала свою эффективность при производстве: точность, надежность и однородность . Ее использование становится более простым благодаря программному обеспечению , позволяющему рассчитывать параметры цикла в зависимости от желаемой глубины и марки стали; при этом сохраняется возможность изменять эти параметры цементации в конкретных случаях применения.

При массовом производстве, таком как производство автомобилей, наши клиенты чаще выбирают вакуумные печи типа P16_TH. Клиенты, для которых важна гибкость, например производители деталей под заказ, отдают предпочтение печи B6_TH и ее конструкции, которая позволяет одновременно осуществлять закалку газом, закалку маслом и - по заказу - цементацию. Клиенты, которые работают с длинномерными деталями, такими как компоненты узлов приземления в авиационной промышленности (шасси и т.п.), отдают предпочтение ряду вертикальных печей закалки на масло типа V6_TH.

Технические параметры установки

Модельный ряд

Смежная продукция (тот же класс печей - для обзора продукции): B6_TH (двухкамерная печь, позволяющая выполнять закалку газом и закалку на масло), P16_TH (двухкамерная печь, предназначенная для закалки на масло и обработки крупных садок), V6_TH (вертикальная печь закалки на масло для обработки крупных и длинномерных деталей).

Вакуумные печи типа B5_TM были специально разработаны для вакуумного отжига типа MIM (Metal Injection Molding) на основе вакуумных печей типа B5_T. Кроме мощных насосных агрегатов, эти вакуумные печи типа B5_TM, предназначенные для работы с температурами до 1450°C, могут быть оборудованы изоляцией из 100% графита или металла (экраны из молибдена и нержавеющей стали) с учетом чувствительности сплавов, которые будут подвергаться обработке.

В зависимости от выбранных опций, это оборудование будет наилучшим образом адаптировано для вакуумной обработки: пайки, обжига, выведения специальных сплавных газов, MIM, прокаливания, выдержки, борирования, цементации при низком давлении ALLCARB ® .

Технические параметры установки

Рабочая зона обработки:
Максимальная температура обработки: 1250°C (до 1450°C - дополнительно, под заказ)
Однородность при +/- 5°C свыше 750°C при излучении
От 1,4 бар до 2 бар абс.
Осевое охлаждение (впереди - впрыскивание, сзади - нагнетание)
Уровень вакуума (предельный вакуум для пустых печей): От 5×10 -2 мбар или 5×10 -6 мбар
Контроль работы установки: Интерфейс типа GRAPHTIL ®
Термохимическая обработка:

Модельный ряд

Типоразмер Ширина (мм) Высота (мм) Длина (мм) Садка (кг)
B53T 450 450 600 200
B54cT 600 600 600 400
B54T 600 600 900 600
B55cT 900 700 900 800
B55T 900 700 1200 1000
B56T 1000 1000 1500 1600
B57cT 1200 1200 1200 1600
B57T 1200 1200 1800 2000

Смежная продукция (тот же класс печей - для обзора продукции) : VSE8_T (вертикальная вакуумная печь с подъемным подом специально адаптирована для пайки), BMICRO (компактная вакуумная печь для обработки при высокой температуре), B8_T (горизонтальная вакуумная печь дает возможность выполнять операции по закалке под высоким давлением и осуществлять циклы при низкой температуре в зависимости от дополнительных функций).

Благодаря небольшой стоимости и незначительным затратам на обслуживание, эта небольшая вакуумная печь типа BMICRO является более экономичной альтернативой аутсортингу.

Эта небольшая промышленная печь наилучшим образом адаптирована для основных видов вакуумной термической обработки при высоких температурах, таких как закалка газом, пайка, снятие напряжений, прокаливание и цементация при низком давлении типа ALLCARB ® - это дополнительные опции. Эти маленькие вакуумные печи могут быть оборудованы конвекционным нагревом для сокращения времени нагрева и равномерной термической обработки при низких температурах, а также уменьшения циклов вакуумного отжига, который часто дополняет вакуумную закалку газом.

Технические параметры установки

Рабочая зона обработки: Минеральная вата и молибден в стандартном комплекте поставки.
Альтернативная изоляция - на заказ
Максимальная температура обработки:
Давление / скорость охлаждения: От 5 бар до 12 бар абс.
Охлаждение типа сверху-вниз
Уровень вакуума (предельный вакуум для пустых печей): От 5×10 -2 мбар или 5×10 -6 мбар
Контроль работы установки: Интерфейс типа GRAPHTIL ®
Термохимическая обработка: Цементация при низком давлении типа ALLCARB ® (опционально)

Модельный ряд

BMICRO - это экономически выгодная альтернатива для обработки садок небольшого размера, а печь B8_T больше подходит для обработки более плотных садок.

Технические параметры установки

Рабочая зона обработки: Минеральная вата и молибден в стандартном комплекте поставки.
Альтернативная изоляция - на заказ
Максимальная температура обработки: 1250°C (до 1450°C - опционально, по заказу)
Однородность +/- 5°C свыше 750°C при излучении
Однородность +/-5°C в диапазоне 200 - 800°C при конвекционном нагреве (опционально)
Давление / скорость охлаждения: От 1,4 бар до 12 бар абс.
Охлаждение типа снизу-вверх (альтернативные варианты - по заказу)
Уровень вакуума (предельный вакуум для пустых печей): От 5×10-2 мбар или 5×10-6 мбар
Контроль работы установки: Интерфейс типа GRAPHTIL ®
Термохимическая обработка: Цементация при низком давлении типа ALLCARB ® (опционально)

Модельный ряд

В зависимости от выбранных операций это оборудование будет специально адаптировано для вакуумной закалки стали (без окисления поверхности), резкой закалки нержавеющей стали, светлого отжига, выдержки, снятия напряжений, пайки, обжига, выведения газов из сплавов, отжига сталей, цементации при низком давлении ALLCARB ® .

Полностью автоматизированная установка обеспечивает неизменно высокие результаты.

BMICRO - это экономически выгодная альтернатива для обработки садок небольшого размера, а печь VSE8_T больше подходит для обработки садок крупного размера.

Технические параметры установки

Модель Диаметр (мм) Высота (мм) Садка (кг)
VSE83T 600
Рабочая зона обработки: Минеральная вата и молибден в стандартном комплекте поставки.
Альтернативная изоляция – на заказ
Максимальная температура обработки: 1250°C (до 1450°C – дополнительно, по заказу)
Однородность +/- 5°C свыше 750°C при нагреве излучением
Однородность +/-5°C в диапазоне 200 – 800°C при конвекционном нагреве (опционально)
Давление / скорость охлаждения: От 5 бар до 12 бар абс.
Охлаждение с помощью специального вращательного устройства (патент BMI)
Уровень вакуума (предельный вакуум для пустых печей): От 5×10 -2 мбар или 5×10 -6
Контроль работы установки: Интерфейс типа GRAPHTIL®
Термохимическая обработка: Цементация при низком давлении типа ALLCARB® (опционально)

Модельный ряд

Смежная продукция: VSE8_T (вертикальное исполнение) и BMICRO (компактная печь для вакуумной газовой закалки)

Термический цех или участок – это помещение с необходимым для термической обработки оборудованием и механизмами, а также с мощной приточно-вытяжной вентиляцией.

Для нагревания стали используют кокс, горючие газы, нефть, а также электрический ток.

Различают следующие виды термических печей: электрические, газовые, печи, работающие на жидком и твердом топливе, а также установки для нагрева токами высокой (ТВЧ) и промышленной частоты. В небольших цехах и мастерских используют печи с газовым, нефтяным или коксовым нагревом.

Наиболее широко для нагрева при термообработке используют электропечи: камерные с металлическими или карборундовыми нагревателями, шахтные, печи-ванны, тигельные печи-ванны, конвейерные, толкательные, барабанные.

Охлаждение стали можно производить на воздухе, в воде, водных растворах, маслах, жирах и на стальных плитах. Оборудование для охлаждения – это ванны и баки с охлаждающей жидкостью, как правило, проточной, баки с внутренним змеевиком для подогрева жидкости и другое оборудование.

4.3. Измерение температуры и твердости стали

Определение температуры при термической обработке можно производить на основании цвета излучения нагретой стали или с использованием измерительных приборов.

Ориентировочно температуру можно определить по цвету нагретого металла (табл. 23).

Таблица 23 Цвета стали при различных температурах

К измерительным приборам для измерения температур относятся различные термометры (манометрические термометры, термометры сопротивления и др.), термопары, оптические пирометры, термоэлектрические пирометры и термокарандаши.Используют следующие методы определения твердости металла. Неточные методы: проба напильником, проба по цвету искры при заточке изделия на шлифовальном круге (см. также п. 3.3). Точные методы определения твердости: по Бринеллю (вдавливание стального шарика в исследуемый металл, обозначение твердости HB ), по Роквеллу (вдавливание в исследуемый металл алмазного конуса, обозначения HR, HRB, HRC и HRA ), по Виккерсу (вдавливание в исследуемый материал алмазной пирамиды, обозначение HV ), а также по методу упругой отдачи Шора (по высоте отскакивания шарика или бойка от обработанной поверхности, обозначение HSD ).

4.4. Отжиг стали

Отжигом называют термическую операцию, заключающуюся в нагревании материала до определенной температуры, выдерживании его при этой температуре и медленном охлаждении.

Целью отжига углеродистой стали является снятие внутренних напряжений, получение мелкозернистой структуры стали, уменьшение твердости, улучшение обрабатываемости, а также увеличение пластичности и вязкости стали.

Различают следующие виды отжига углеродистых сталей: для снятия наклепа, диффузионный, рекристаллизационный, изотермический, на зернистый перлит, нормализация.

Диффузионный отжиг – нагревание стали до температуры 1000–1250 °C (оптимальная температура 1150 °C), выдерживание при этой температуре в течение определенного времени и последующее медленное охлаждение в течение 6–8 ч до температуры 800–890 °C в печи, а затем – на воздухе. Целью этой операции является уменьшение неоднородности химического состава деталей, имеющих внутрикристал-лическую ликвацию. Эта операция используется для крупного стального литья и крупных слитков из легированных сталей.

Бывший в пользовании инструмент (молоток, зубило, пробойник, напильник, плашка и т. д.) с целью его переделки или исправления подвергают нормализации. Отжиг этого вида основан на нагревании стали до определенной температуры, кратковременной выдержке при этой температуре и последующем постепенном охлаждении на воздухе.

Отжиг стали производится в печах, предназначенных для нагревания стали при различных процессах термической обработки.

4.5. Закалка стали

Закалкой называется технологический процесс термической обработки, применяемый для получения высоких механических свойств стальных изделий за счет изменения их структуры. Закалка состоит в нагревании изделия до определенной температуры, выдержке при этой температуре для ее выравнивания по всему сечению изделия и быстром охлаждении. Применяют следующие виды закалки: в одном или двух охладителях, струйчатую, ступенчатую и изотермическую.

Способ нагревания стали оказывает большое влияние на весь дальнейший процесс термической обработки. Перед нагреванием стали для закалки следует прежде всего определить вид и сорт стали. Если сталь не подвергалась отжигу, следует ее отжечь. Сталь необходимо очистить от грязи и следов жира.

Чем меньше в стали содержание углерода, тем выше температура нагревания.

Нагрев изделий под закалку производят одним из трех способов: в печах с газовой атмосферой – мазутных, нефтяных, газовых, электрических; в ваннах с жидкими средами – расплавленными солями или металлами; токами высокой частоты.

Скорость нагрева изделий зависит от способа их укладки, массы загружаемых в печь или ванну изделий, от их габаритных размеров и теплопроводности.

Время нагрева до 800 °C цилиндрических деталей на 1 мм диаметра в электропечах составляет примерно 40–50 с, а в мазутных и нефтяных печах – 35–40 с.

В качестве жидких сред для нагрева до 800 °C применяются свинцовые или соляные ванны. Время нагрева в свинцовой ванне на 1 мм диаметра составляет 6–8 с, а в соляных – 12–15 с.

Выдержка изделия при температуре закалки необходима для выравнивания температуры по всему сечению и обеспечения завершения происходящих при этом структурных превращений. Время выдержки зависит от химического состава стали, ее теплопроводности, величины, формы и массы закаливаемых изделий. На практике время выдержки принимают равным 20–30 % от общего времени нагрева до заданной температуры.

Изделие следует правильно уложить в печи или в ванне, чтобы избежать деформирования.

Нагревание должно быть постепенным (следует избегать случайного подъема температуры) и производиться таким образом, чтобы нагревалась вся масса материала (изделия нужно часто переворачивать). За нагреванием стали необходимо наблюдать, чтобы избежать перегрева и пережога. Для предотвращения окисления стали может быть использована нейтральная атмосфера в камере печи.

Время и температура нагревания стали для закалки зависит от вида и сорта стали, от массы и формы изделия. Например, сталь углеродистая постепенно нагревается от 0 до 350 °C, а после достижения этой температуры ее можно быстро подогревать до температуры закалки.

При нагревании стали происходят структурные изменения, которые, в зависимости от времени выдержки при данной температуре, оказывают большое влияние на механические свойства стали. Применение неправильного способа или метода нагревания стали ведет к окислению или обезуглероживанию поверхности, что вызывает изменение свойств стали. Избежать таких нежелательных явлений можно при использовании для нагревания электрических печей.

Для предохранения изделий при нагревании от окисления и обезуглероживания в рабочем пространстве печи создают защитную нейтральную газовую среду Если невозможно создать защитную газовую среду изделия для нагрева упаковывают в ящики с отработанным карбюризатором, пережженным асбестом, неокисленной чугунной стружкой или наносят на изделие обмазку.

В зависимости от требований, предъявляемых к изделиям, применяют следующие способы закалки: в одной и двух жидкостях или жидких средах – вода, масло; ступенчатую – охлаждение в расплавленной соли и на воздухе; изотермическую – охлаждение в расплавленной соли с температурой около 300 °C до полного превращения аустенита, а затем в воде или на воздухе.

Для получения твердого поверхностного слоя, мягкой и пластичной сердцевины применяют закалку с самоотпуском (для закалки инструмента).

Для уменьшения внутренних термических напряжений и деформации при закалке применяется закалка с подстуживанием.

К охлаждающим жидкостям относятся масла (специальное масло для закалки, машинное или веретенное масло), вода, а также различного рода растворы (мыла, кислоты или поваренной соли в воде и др.). Растительное масло для закалки не используют.

Способ охлаждения и вид охлаждающей жидкости при закалке стали зависит от сорта и марки стали, от требуемой степени закалки, а также от конфигурации и величины закаливаемой детали.

4.6. Термическая обработка быстрорежущей стали

Быстрорежущие стали относятся к группе высоколегированных. Они характеризуются красностойкостью и сохраняют высокую прочность, твердость и износостойкость при нагреве до 600–700 °C. Применяются для изготовления режущего инструмента высокой производительности. Основными легирующими материалами этих сталей являются вольфрам, ванадий и хром.

Термическая обработка быстрорежущих сталей имеет ряд особенностей, что обусловлено их пониженной теплопроводностью, наличием в их структуре значительного количества карбидов, а также низкой пластичностью стали.

Инструмент из быстрорежущей стали до температуры закалки нагревают ступенчато: вначале медленно до температуры 800–850 °C, затем быстрее до окончательной температуры закалки 1200–1300 °C. Ступенчатый нагрев позволяет избежать тепловых напряжений за счет уменьшения разности температуры поверхности и сердцевины изделия.

С целью предохранения инструмента от обезуглероживания перед нагревом его погружают в насыщенный раствор буры. Иногда предварительно подогретый до 800–850 °C инструмент перед окончательным нагревом покрывают порошком обезвоженной буры.

В качестве охлаждающей среды при закалке быстрорежущих сталей применяют подогретое минеральное масло или охлаждают инструмент на воздухе.

Структура закаленной быстрорежущей стали состоит из первичного мартенсита, остаточного аустенита и сложных карбидов.

Отпуск быстрорежущей стали следует производить как можно быстрее сразу после закалки. Как правило, рекомендуется вести многократный отпуск.

Сталь до температуры отпуска нагревается постепенно и равномерно (температура нагревания стали при отпуске находится в границах 380–570 °C в зависимости от марки стали). Выдержка после нагрева производится в течение часа. Охлаждение ведут на воздухе.

Если после закалки применяют обработку быстрорежущей стали холодом при температуре –80 °C, то производят только один отпуск.

После термической обработки структура быстрорежущей стали состоит из отпущенного мартенсита и карбидов.

Температура нагревания быстрорежущей стали для ковки в зависимости от марки составляет 950–1150 °C. В первый период до 850 °C нагревают постепенно, а затем – быстро до требуемой температуры ковки. После ковки сталь постепенно охлаждается в песке или в пепле.

Для снижения твердости стали ее нагревают до температуры 800–850 °C и выравнивают температуру по сечению. Охлаждать следует постепенно до температуры 650 °C. Дальнейшее охлаждение можно вести на воздухе (табл. 24).

4.7. Поверхностная закалка стали

Поверхностная закалка стали состоит из быстрого нагрева поверхностного слоя стали до температуры, значительно превышающей критическую, и последующего быстрого ее охлаждения. При этом обеспечивается высокая поверхностная твердость при мягкой и пластичной сердцевине детали.

В промышленности применяются следующие способы нагрева для поверхностной закалки: газопламенный (ацетилено-кислородным пламенем); контактный или индукционный электронагрев; в электролите; в соляных и металлических ваннах.

Для индукционного нагрева применяют ток промышленной, средней и высокой частоты.

Таблица 24 Режимы термической обработки быстрорежущей стали

В качестве электролитов при нагреве за счет пропускания тока между деталью-катодом и корпусом ванны – анодом применяются 10 %-ные растворы поваренной соли, поташа и кальцинированной соды.

Основное преимущество поверхностной закалки стали – повышение выносливости детали к воздействию разного рода динамических нагрузок (например, изгибающих, на срез) при сохранении большой износостойкости. Этот метод позволяет получить твердую износостойкую поверхность и пластичную сердцевину.

Применяя поверхностную закалку стали, сокращают время обработки, так как нагрев длится недолго. При небольшом времени обработки не происходит обезуглероживания и окисления стали. Нагревание только наружного слоя исключает возможность появления больших напряжений.

Для газопламенного нагрева стали при поверхностной закалке используют горелку, соединенную с ацетиленовым и кислородным баллонами. Ацетилено-кислородным пламенем нагревают поверхность изделия. С горелкой соединено сопло, через которое подается вода. Пламя горелки за время передвижения с определенной скоростью над поверхностью стали нагревает ее, а через сопло, находящееся за горелкой и передвигающееся вместе с ней, на нагретую поверхность подается вода, быстро охлаждающая изделие.

4.8. Термическая обработка некоторых видов инструментов

Только что изготовленные метчик или плашка не отжигаются: эти инструменты изготавливают из отожженной стали. Так как метчики и плашки изготавливают из инструментальной углеродистой стали У11А с содержанием углерода около 1,1 %, то температура нагрева инструмента для закалки составляет 760–780 °C (цвет каления – темно-вишневый), отпуск производится при температуре 230–240 °C (цвета налета: светло-соломенный, соломенный, темно-соломенный, желтый, переходящий в темно-желтый). Метчики и плашки охлаждаются в воде.

Твердость после закалки составляет HRC 62.

Сверла, развертки и прошивки изготовляются из инструментальной углеродистой стали У10А или У11А с содержанием углерода 1,0–1,1 %. Температура закалки составляет 760–780 °C (цвет каления – темно-вишневый). Отпуск инструмента ведется при температуре 220–240 °C (цвета налета: светло-соломенный, соломенный, темно-соломенный, переходящий в желтый). Охлаждение инструмента производится в воде.

Напильники, шаберы и режущий инструмент изготовляются из инструментальной высокоуглеродистой стали У12А или У13А с содержанием углерода 1,15–1,3 %. Температура закалки составляет 760–780 °C (цвет каления – от красного до вишневого). Отпускают инструмент при температуре 180–230 °C (цвет налета от белого до желтого). Охлаждение производится в воде.

Инструмент для ковки, слесарные молотки и топоры изготовляются из инструментальной углеродистой стали У7 или У7А с содержанием углерода 0,6–0,7 %. Температура закалки составляет 800–820 °C (цвет каления – от вишневого до светло-вишневого). Охлаждение производится в воде. Отпуск слесарных молотков ведется при температуре 250–260 °C, инструмента для ковки и топоров – при температуре 290 °C.

4.9. Другие виды термической обработки

Химико-термическая обработка – это такая обработка металлов, при которой производится одновременно тепловое и химическое воздействие на обрабатываемое изделие. Для химико-термической обработки детали нагревают в специальной среде (карбюризаторе) до определенной температуры, выдерживают при этой температуре и затем охлаждают.

В процессе нагрева поверхностный слой деталей насыщается активным элементом (углеродом, азотом, алюминием, хромом и др.), в результате чего изменяются его физико-механические свойства.

Химико-термическая обработка предназначена для изменения химического состава поверхностных слоев стальных деталей машин и других изделий и придания им требуемых физико-механических свойств: высокой твердости, износостойкости, коррозионно– и окали-ностойкости, а также красностойкости.

К химико-термической обработке относятся цементация (науглероживание), цианирование, азотирование, хромирование, силициро-вание, сульфидирование, борирование, алитирование и др.

Цементация стали – это химико-термическая обработка, заключающаяся в насыщении углеродом поверхностного слоя изделия, выполненного, как правило, из мягкой малоуглеродистой стали, в которой содержание углерода не превышает 0,25 %. Для науглероживания изделия выдерживают в течение длительного времени при определенной температуре в среде (карбюризаторе), выделяющей окись углерода.

Цементированные изделия обычно подвергают термической обработке – закалке.

При этом в поверхностном науглероженном слое образуется структура мелкоигольчатого мартенсита, обладающая высокой твердостью и износостойкостью.

Характерной особенностью цементированной стали является то, что после закалки получается тонкий наружный твердый и износостойкий слой, в то время как мягкая и пластичная сердцевина сопротивляется ударам и динамическим нагрузкам.

Науглероженные изделия незначительно деформируются во время закалки (из-за мягкой сердцевины). Обработка сердцевины возможна только после удаления с предмета твердого науглероженного слоя.

Различают три вида цементации: в твердом карбюризаторе (смесь, включающая 75–90 % древесного угля, 5–10 % углекислого бария, 3–12 % кальцинированной соды и 2–3 % мазута или другого состава); жидкостную (погружением в ванну со смесью расплавленных до температуры 850–890 °C солей – поташа, хлористого аммония, поваренной соли); газовую (в углеродосодержащем газе; применяют природный газ, пропан, бутан, нефтяной, коксовый газ и др.).

Глубина науглероженного слоя зависит от среды, способа и времени науглероживания. Например, цементация в жидких соляных ваннах при температуре 850–890 °C дает возможность получить слой толщиной 0,2 мм в течение одного часа, слой 0,8 мм – в течение 4 часов. При применении твердых карбюризаторов, засыпаемых в чугунные короба, глубина науглероженного слоя при температуре 850–890 °C составляет 0,25 мм за 3 ч и 1,4 мм за 8,5 ч.

Длительность газовой цементации также определяется необходимой глубиной науглероженного слоя: за 2–3 ч получают слой 0,3–0,5 мм, за 9–10 ч – слой 1,2–1,4 мм.

Цементация стали в чугунных коробах или коробах из листового металла применяется для деталей с небольшими габаритными размерами. На дно короба, посыпанное слоем твердого карбюризатора толщиной 15–20 мм, укладываются изделия, которые покрываются следующим слоем карбюризатора. И так далее – до заполнения короба. Верхний слой карбюризатора должен быть не менее 50 мм. Между изделиями должно сохраняться расстояние 5–10 мм. Заполненный ящик закрывают крышкой из листового металла или асбеста, герметизируют огнеупорной глиной и помещают в печь для нагревания.

Температура нагревания – 850–950 °C. Для уменьшения внутренних напряжений изделия после цементации и закалки необходимо подвергнуть отпуску при температуре не выше 200 °C.

Частичная цементация – это науглероживание определенной части изделия, которая должна быть более твердой и износостойкой. Остальные части изделия, не подвергающиеся цементации, покрывают защитным слоем (глиной, асбестом, гальванической медной пленкой).

Цианированием называется быстрый процесс одновременного насыщения поверхности стальных деталей углеродом и азотом для достижения высокой твердости и износостойкости.

Различают два вида цианирования: газовое (нитроцементация), которое производится на том же оборудовании, что и цементация в газовой среде, состоящей из цементующего газа и аммиака, при температуре 850–900 °C, и жидкостное – в расплавленных смесях цианистых солей при температуре 820–850 °C.

После цианирования изделия подвергают термической обработке – закалке и отпуску.

4.10. Операции после закалки

После закалки изделия очищаются с целью удаления грязи, окислов и пятен, а также с целью подготовки изделия к отпуску.

После отпуска изделия обязательно обрабатываются щетками, в струе мокрого песка или в горячих щелочных растворах.

Некоторые изделия, которые после закалки деформируются, можно править. Править можно только плоские, а также круглые, длинные и тонкие изделия. Во избежание брака правку следует вести очень осторожно, без ударов. Используется ручная и механическая правка на винтовых и гидравлических прессах.

В изломе закаленного образца можно обнаружить следующие дефекты: окисление (вследствие слишком быстрого охлаждения перегретого или неравномерно нагретого изделия), потемнение (сталь имела дефекты до закалки), крупнозернистость (сталь перегрета), микротрещины, радиально направленные к сердцевине (большие внутренние напряжения в материале).

Есть несколько причин, которые могут вызвать недостаточную закалку изделия, например, следующие: обезуглерожен верхний слой стали, низкое содержание углерода, обезуглероживание поверхности изделия во время нагревания, низкая температура нагрева, неправильно подобранная охлаждающая среда или короткое время охлаждения, небрежная подготовка изделия к закалке (изделие, покрытое жиром и грязью, может закалиться только в некоторых местах). Иногда наблюдается неравномерная закалка поверхности изделий, имеющих сложную форму и острые кромки.

Недостаточно закаленные изделия следует вновь подвергнуть термической обработке. Перед этим изделие нужно отжечь. Обезуглеро-женный вследствие отжига слой, насколько это возможно, удаляется, например, ручной запиловкой, строганием, точением. Затем изделие науглероживают, азотируют, цианируют или сразу же закаливают.

Самый распространенный, хотя и недостаточно точный способ контроля закалки изделия – это проверка напильником. Опытные слесари проверяют ударом молоточка по кромке закаленного изделия (по сколу или углублению). Можно также проверять степень закалки с помощью эталонных плиток по глубине риски, выполненной твердым инструментом, или с помощью специальных приборов.

Ослабление внутренних напряжений, возникших в изделии во время закалки, можно обеспечить путем нагревания стали в допустимых для данной марки пределах и равномерного и не слишком быстрого охлаждения, а также путем правильно проведенного отжига, закалки и правильного отпуска изделия после закалки.

4.11. Отпуск стали

Отпуск – это термическая операция, которой подвергают предварительно закаленные стальные изделия. Она заключается в нагревании изделий до определенной температуры, выдерживании при этой температуре и последующем постепенном охлаждении на воздухе. Отпуск на цвет побежалости производится в интервале температур 230–330 °C (табл. 25) с последующим замачиванием в воде.

Таблица 25 Цвета побежалости при отпуске стали

Цель отпуска – уменьшение или полное снятие внутренних напряжений в изделии, появившихся во время закалки, улучшение пластических свойств, уменьшение хрупкости и некоторое снижение твердости (степень твердости зависит от температуры отпуска), увеличение вязкости.Применяют три способа отпуска закаленной стали: низкий – при температуре 150–250 °C, средний – при температуре 350–450 °C и высокий – при температуре 450–650 °C.

Температуру отпуска для определенных марок стали (а также разных изделий) и вид охлаждающей среды определяют по специальным таблицам.

Нагрев при отпуске производится в масляных, селитровых или щелочных ваннах, а также в газовых, мазутных или электрических печах с воздушной атмосферой. В ряде случаев применяется нагрев в горне или на разогретой металлической плите. Общее время пребывания изделия в печи при отпуске составляет примерно 2–3 мин на 1 мм наименьшего сечения детали, но не менее 30–40 мин.

В результате низкотемпературного отпуска при температуре 150–250 °C уменьшаются внутренние напряжения и хрупкость стали, незначительно снижается твердость, несколько увеличивается вязкость. Низкому отпуску подвергаются изделия, которые должны иметь высокую твердость (режущий и мерительный инструмент). Средний отпуск при температуре 350–450 °C несколько снижает твердость и значительно увеличивает вязкость, сопротивляемость стали ударам, прочность и упругость. Применяется для пил, рессор-пружин, молотков, матриц, пуансонов, автомобильных деталей. Высокий отпуск при температурах 450–650 °C полностью устраняет внутренние напряжения и обеспечивает наилучшее сочетание прочности и вязкости стали при достаточной ее твердости. Применяется для ответственных деталей.

Двойной отпуск применяется для инструмента, поверхность которого должна иметь различную твердость (пуансон, вырубной штамп, прошивень, зубило). Например, зубило: первый отпуск при температуре ниже 300 °C выполняют для режущей части, второй отпуск при температуре 300–500 °C – для головки зубила.

Термическое улучшение стали состоит из процессов закаливания и высокого отпуска. Тем самым достигается улучшение механических свойств стали, обеспечивается возможность обработки резанием.

4.12. Термическая обработка чугуна

В зависимости от структуры различают следующие классы чугу-нов: ферритный, феррито-перлитный, перлитный и перлитно-цемен-титный. В промышленности применяются чугуны ферритно-перлит-ного и перлитного классов.

Различают также следующие виды чугунов: серый, белый, модифицированный, высокопрочный, ковкий и специальные легированные чугуны.

Серые чугуны обозначаются буквами СЧ, а высокопрочные – ВЧ. Первые две цифры после букв СЧ указывают предел прочности на растяжение, а вторые две цифры – предел прочности на изгиб. После ВЧ вторые две цифры обозначают относительные удлинения в процентах.

Для повышения механических свойств чугуна применяются следующие виды термической обработки: отжиг, нормализация, закалка и отпуск.

Термической обработке подвергаются практически все виды чугу-нов, особенно серый, ковкий и высокопрочный.

Низкотемпературный отжиг выполняют при температуре 500–550 °C с выдержкой от 2 до 8 ч. Охлаждение производится со скоростью 20–30 °C в час до температуры 150–200 °C, затем на воздухе. Применяется для снятия внутренних напряжений, заменяет естественное старение.

Высокотемпературный отжиг проводят при температуре 950–1000 °C с выдержкой в течение до 4-х часов и охлаждением в печи. Применяется для повышения обрабатываемости чугуна, понижения его твердости, а при длительной выдержке – для получения ковкого чугуна.

Нормализация (нагрев до температуры 820–900 °C с последующим охлаждением на воздухе) применяется для повышения износостойкости и прочности чугуна.

Закалка чугуна может быть обычной, изотермической с нагревом в печах или токами высокой частоты. Нагревают до 830–900 °C. При изотермической закалке охлаждение производится в ванне с расплавленной солью, нагретой до 200–400 °C. При закалке в масле изделия нагревают до 830–870 °C, при закалке в воде – до 800–820 °C.

Закалка применяется для повышения твердости, износостойкости, предела прочности и упругости.

Закаленный чугун подвергается низкотемпературному (180–250 °C) или высокотемпературному (400–600 °C) отпуску для снятия внутренних напряжений, повышения пластичности и прочности.

Для литья деталей машин используется серый чугун с содержанием углерода от 3,1 до 3,6 %, а также ковкий, высокопрочный модифицированный; для особо ответственных деталей – специальные легированные (жаропрочные, коррозионностойкие и др.) чугуны.

Легированным называют чугун, содержащий специальные добавки, такие как никель, молибден, кремний, хром и ванадий. Легированные чугуны с целью закаливания нагреваются до температуры 850–880 °C, а затем охлаждаются в масле. Температура отпуска 200–250 °C.

Модифицированный чугун – это чугун, в который в жидком состоянии перед разливкой введены модификаторы: ферросилиций, силикокальций и алюминий, церий, магний. Модификаторы способствуют получению высоких прочностных и других механических свойств чугуна.

Ковкий чугун получают из белого или серого чугуна путем соответствующего отжига. После такой термической обработки он приобретает вязкость, хорошую обрабатываемость и механическую прочность.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png